Gene Drive Risk Assessment

Developing Approaches

Hector Quemada ISAAA Webinar June 16, 2022

Gene Drive Research

• Disease control

- Mosquitoes (malaria)
- Rodents (ticks \rightarrow Lyme disease)
- Conservation/invasive species elimination
 - Rodents (bird predation) •
 - Cane toads ${\color{black}\bullet}$
 - Fish lacksquare
 - Golden mussel lacksquare
- Agriculture (pest elimination)
 - Rodents
 - Insects

Range of applications

Few Projects Have Conducted Biosafety-Related Work

- Early stages: too soon to do project-specific work for most projects
- Some preliminary work has been done • Problem formulation workshops
 - FNIH
 - AUDA/NEPAD
 - EFSA

PROBLEM FORMULATION FOR GENE DRIVE IN MOSQUITO

Perspective Piece

Results from the Workshop "Problem Formulation for the Use of Gene Drive in Mosquitoes"

Andrew Roberts,¹* Paulo Paes de Andrade,² Fredros Okumu,³ Hector Quemada,⁴ Moussa Savadogo,⁵ Jerome Amir Singh,^{6,7} and Stephanie James⁸

Problem formulation for one potential product Ο

> Connolly et al. Malar J (2021) 20:170 i.org/10.1186/s12936-021-03674-6

Malaria Journal

RESEARCH

Open Access Check fr

Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa

John B. Connolly^{1*}, John D. Mumford², Silke Fuchs¹, Geoff Turner¹, Camilla Beech³, Ace R. North⁴, and Austin Burt¹

Roberts et al. AJTMH 2017

Teem et al. Malar J (2019) 18:347 https://doi.org/10.1186/s12936-019-2978-5

Malaria Journal

RESEARCH

Problem formulation for gene drive mosquitoes designed to reduce malaria transmission in Africa: results from four regional consultations 2016–2018

John L. Teem¹, Aggrey Ambali², Barbara Glover², Jeremy Ouedraogo³, Diran Makinde² and Andrew Roberts^{1*}

APPROVED: 9 March 2020

doi:10.2903/sp.efsa.2020.EN-1819

Stakeholder workshop "Problem formulation for the environmental risk assessment of gene drive modified insects" (15 May 2019, Brussels)

> European Food Safety Authority (EFSA), Yann Devos, Barbara Gallani and Leslie G Firbank

Pathway to intended efficacy outcomes	Potential factor intended effica
Release of gene drive dsxF ^{CRISPR6} transgene in An. coluzzii	
	Poor mating success of
Mating and transmission of transgene to next generation	Unexpected fitness of which could be (1) in or both, larvae or add (e.g. dry season-spe biotic environment, of any other differences conditions, e.g. unexp
Branch point for Pathways: 11-13,	expected nuclease
16	Unexpectedly low ho to physical or genet conditions that rea
Increase in frequency of gene drive transgene in An. gambiae	cleavage, homolog complete homing, stable trans
Branch point for Pathways: 1–6, 8-10, 14-15, 17-26, 28, 31-42, 44	A high frequency of s translate into the exp in population densi population model wa R _m under-estimate dependence was o form, or dispersal
Sustained reduction in An. gambiae population size	Initial suppression is because resistance e site or else
Branch point for Pathways: 7, 27, 29, 43, 45	Vector species re competition with A increases in
Sustained reduction in malaria	Vector competence increases with decr
transmission	Pathogen evolves to t vector spi
Branch point for Pathways: 30 & 46	

ors inhibiting acy outcomes	Analysis plan to assess potential factors inhibiting intended efficacy outcomes	
	Assess fitness, such as egg laying, larval and pupal mortality, sex ratio, adult survival, mating competiveness, of heterozygous and homozygous transgenics compared to non-transgenic comparator in small and large cage studies, including with respect to dry season stresses such as tolerance for reduced humidity compared to non-transgenic	
	Bioinformatic assessment of potential for transgene for off-target effects from Cas9/gRNA or mutations in gRNA sequence that could cause re-targeted off-locus nuclease activity using Anopheles reference genome sequences including natural variant polymorphism	
s of released males cost of transgene in females, males dults: (2) seasonal	In vitro molecular analysis of Anopheles genome using Cas9/gRNA followed by sequencing analysis of identified non- target sites <i>in vivo</i> in transgenic mosquitoes	
cortic); (3) in the cortic); (3) in the cortic); (3) because of es from laboratory	Test for more than 50% inheritance of identified mutations at off-target or re- targeted sites	
xpected off-target ue to lower than use specificity.	Calculate net effects of homing of transgene in cage studies and on potential fitness costs	
homing rates, due etic environment reduces rates of ogous repair, or	Assess by molecular analyses the copy number of transgene insertion to verify absence of rearrangements that might lead to repetitive sequences in the transgene	
g, leading to less nsgene.	Assess homing rates of the dsxP ^{CRISPR6} transgene in the genetic backgrounds of a variety of different species of An. gambiae	
f sterility does not xpected reduction sity because the was incorrect (e.g.,	Bioinformatic and molecular assessment to determine whether φC31 integrase-, Cas9, or RDF-related sequences are present in <i>An. gambiae</i> or transgenic strain	
of the incorrect al was too low)	Model the dynamics of transgene mutation and competition with drive allele to reach equilibrium frequencies	
is not sustained evolves, at target	Assess via bioinformatics the level of conservation of gRNA target sequence in non-transgenic populations	
ewhere. released from	Generate artificial CRISPR resistant alleles by <i>in vitro</i> selection and test if they retain viability or fertility <i>in vivo</i>	
An. gambiae and in density	Assess whether any natural polymorphisms identified in wild populations can be targeted by gRNA and cleaved by Cas9	
creased density	Assess equilibrium between gene drive and R2 alleles by seeding cage at a certain frequency with both R2 individuals and	
pecies	Review literature on the plausibility of (1) second-site suppressors of gene drive	
	activity in CRISPR-Cas9 model systems or of doublesex mutations; (2) acquisition and heritable expression in the germline of phage anti-CRISPR genes that could lead to germline suppression of Cas9 activity; and (3) generation and vertical transmission of piwi-interacting RNA that suppresses Cas9 activity	

- Wolbachia (Murray et al. 2016)
- Transgenic Mosquitoes **CSIRO:** Target Malaria Brown et al. (2022)
- Hypothetical mouse Brown et al. (2022)

ORIGINAL ARTICLE

DOI: 10.1111/risa.13948

Journal of Risk Analysis

Bayesian network-based risk assessment of synthetic biology: Simulating CRISPR-Cas9 gene drive dynamics in invasive rodent management

Ethan A. Brown 💿 🕴 Steven R. Eikenbary 👘 Wayne G. Landis

trontiers 🕈 in Public Health

ORIGINAL RESEARCH published: 22 March 2016 doi: 10.3389/fpubh.2016.00049

Risk Associated with the Release of Wolbachia-Infected Aedes aegypti Mosquitoes into the Environment in an Effort to Control Dengue

Justine V. Murray1*, Cassie C. Jansen1.2 and Paul De Barro1

CSIRO, Brisbane, QLD, Australia, ²Metro North Public Health Unit, Queensland Health, Brisbane, QLD, Australia

CSIRO BIOSECURITY FLAGSHIP www.csiro.au

Risk Assessment for Controlling Mosquito Vectors with Engineered Nucleases: Sterile Male Construct Final report

Keith R. Hayes, Simon Barry, Nigel Beebe, Jeffrey M. Dambacher, Paul De Barro, Scott Ferson, Jessica Ford, Scott Foster, Anders Gonçalves da Silva, Geoffrey R. Hosack, David Peel and Ronald Thresher September 4, 2015

CSIRO HEALTH AND BIOSECURITY www.csiro.au

Risk Assessment for Controlling Mosquito Vectors with Engineered Nucleases: Controlled field release for Sterile Male Construct

Risk assessment final report

Keith R. Hayes, Geoffrey R. Hosack, Adrien Ickowicz, Scott Foster, David Peel, Jessica Ford and Ronald Thresher May 2, 2018

- US National Academy of Science, Engineering and Medicine
- Australian Academy of Science
- RIVM (Netherlands)
- European Food Safety Authority
- NExTRAC

Gene Drives in Biomedical Research Report

September 2021

ADOPTED: 14 October 2020 doi: 10.2903/j.efsa.2020.6297

SCIENTIFIC OPINION

Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post-market environmental monitoring of genetically modified insects containing engineered gene drives

Scientific Opinions

Most opinions have not indicated that new risk assessment methodologies are needed.

The National Academies of SCIENCES · ENGINEERING · MEDICINE

Challenges For Risk Assessment

EFSA

- Receiving environments
- Comparators
- Non-GM surrogates
- Experimental design and statistics
- Long-term effects
- Modelling
- Persistence and invasiveness, including vertical gene flow
- HGT
- Pathogens, infections and diseases
- Interactions with target organisms

NEXTRAC

- Balancing potential benefits/harms
- Comparing with existing interventions
- Dealing with ecological and evolutionary complexity
- Considering potential social and ethical benefits/ harms
- Modeling with limited data
- Detecting rare events
- Identifying endpoints with stakeholder and community input
- Dealing with social and cultural complexity
- Managing uncertainty

Other Disciplines

Risk assessments of organisms with similar characteristics can be used to supplement

- Classical biocontrol
- Invasive species
- Wolbachia

ical Control 52 (201	10) 245–254			
lists available a	t ScienceDirect Biological			
logical C	ontrol			
e: www.elsev	vier.com/locate/ybcon			
sical biolo	ogical control			
^e , J.M. Ke	CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2011 6, No. 042			
	Review			
Assessing safety of biological control introductions				
Barbara I.P. Barratt*				
Address: AgResearch Invermay, PB 50034, Mosgiel, New Zealand.				
*Correspondence: Email: barbara.barratt@agresearch.co.nz				

Risk Assessment for Invasive Species

Mark C. Andersen 🔀, Heather Adams, Bruce Hope, Mark Powell

Areas of Concern Remain The Same

Snow et al. 2005

TABLE 2. Major environmental concerns regarding transgenic organisms.

Process	Potential ecological consequences
Transgenic organisms persist without cultivation	Transgenic organisms that are able to spread and maintain self-sustain tions could disrupt biotic communities and ecosystems, leading to a ological diversity.
Transgenic organisms interbreed with related taxa	Incorporation of transgenes could result in greater invasiveness or loss versity, depending upon the amount of gene flow from generation to tion and the transgenic trait(s).
Horizontal gene flow	The transfer of genes through nonsexual means is common in some me rare in plants and animals. Ecological consequences would depend of of gene flow and the transgenic trait(s).
Changes in viral disease	In transgenic virus-resistant organisms, recombination between viral tr and invading viruses could lead to increased virulence of a disease a sirable effects on wild hosts in natural habitats.
Nontarget and indirect effects	Loss of biodiversity, including species of conservation concern, may o well as altered community or ecosystem function, including reduced pest control, reduced pollination, altered soil carbon and nitrogen cy secondary pest outbreaks.
Evolution of resistance	Resistance to pesticides (including pesticide-producing plants) can lead reliance on chemicals and other pest control methods that are damage environment, including unregistered pesticides under emergency exe This applies to insects, weeds, and other pests.

Note: Note that few types of transgenic organisms have been released into the environment, and therefore few of the potential ecological consequences listed have been documented to date (see *Ecological effects of GEOs* for details).

ing populaloss of bi-

of biodigenera-

icrobes but on amount

and unde-

occur, as I biological ycling, and

d to greater ging to the emptions.

Snow 2019

Table 1. Possible environmental risks of releasing genetically engineered (GE) vertebrates into natural habitats (adapted from Snow et al. 2005), with examples of hypothetical, worst-case scenarios for the current case study involving GE Lyme-resistant white-footed mice.

Type of risk	Hypothetical scenario
Exacerbating effects of existing pests or pathogens.	Scenario 1: Competitive release of more harmful tick-borne pathogen may currently be suppressed by the frequent presence of Lyme spirot in white-footed mice. Scenario 2: Increased unwanted contact between humans and white mice during any massive, pulsed introductions of tens to hundreds of thousands of GE mice.
Facilitating the introduction and establishment of new pests or pathogens.	No proposed scenario.
Loss of genetic diversity within species.	Scenario 1: Genetic bottlenecks that could occur during initial selecti lab-rearing procedures, and field releases of GE white-footed mice, pe leading to inbreeding depression, the loss of subspecies, or the loss of adaptation to local environments.
Harm to other species, in some cases leading to a loss of species diversity.	Scenario 1: Fitness costs or benefits associated with a novel GE trait white-footed mice, resulting in altered abundance or population fluctu with unwanted cascading effects on other species. Scenario 2: Altered foraging behavior of GE Lyme-resistant white-footed mice, such as preying on eggs of ground-nesting birds to a greater ex when white-footed mice are not infected by Lyme spirochetes (Ostfeld 2018b).
Other unwanted disruption of biotic communities, including disruption of ecosystem services.	No proposed scenario.
Noncompliance with legal or regulatory requirements, or with ethical standards for research and deployment of GE animals.	Scenario 1: Unintended dispersal and establishment of GE Lyme-resis white-footed mice on the mainland or on other islands where regulate approvals, environmental risk assessments, or public engagement are lacking. Long distance dispersal could occur via swimming or when w footed mice become stowaways in boxes, gear, firewood, and other ite that are transported by people (e.g., Scheppe 1965).

Note: See the text for details. The environmental benefits of releasing GE vertebrates (e.g., efforts to preserve endangered species) are not considered in the present article, nor are cases that involve gene drive systems.

Guidance

Generic Cartagena Protocol Annex III (additional guidance to be written on gene drives) Ο WHO 2018 guidance Ο Relevant guidance for organisms with similar characteristics (Wolbachia) Ο • Gene Drive Specific • Contained use (Australia, Netherlands, ACME) NEPAD West Africa Integrated Vector Management Ο Cartagena Protocol AHTEG Ο Open Access Vector-Borne and Zoonotic Diseases > Vol. 22, No. 1 > Reviews **Containment Practices for Arthropods Modified** with Engineered Transgenes Capable of Gene **Drive Addendum 1 to the Arthropod Containment Guidelines, Version 3.2** Enhanced ACL2

CARTAGENA PROTOCOL ON BIOSAFETY TO THE CONVENTION ON BIOLOGICAL DIVERSITY

TEXT AND ANNEXES

Summary

- Most projects are still too early to do case-specific research on gene drive events
- Basic risk assessment approaches used with previous GE organisms are appropriate Additional challenges need to be addressed Borrow from risk assessments in other risk assessment disciplines Handling uncertainty Modeling Borrow from risk assessments of other organisms Classical biological control Invasive species Non-synthetic drives Value of additional guidance yet to be determined